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"Nell," a liquid-fueled
rocket developed by Goddard
(second from right), before
launch on April 19, 1932 in
New Mexico. A rocket of
this type reached an alti-
tude of 2 miles and a

speed of 500 mph. Goddard
developed, built and
launched the world's first
liquid-fueled rocket in
1926, six years before the
earliest German work. At
right, the successor to
"Nell," 40 stories high
when completed, and designed
for the manned landing on
the moon, in assembly at
Michoud, La.
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Chapter 1. THE LAWS OF MOTION

The study of moticns and the forces whrich produce them is
the essence of our attempt to understand our physical environ-
ment. The relation between applied forces and the resultant
motions, which controls the working of the physical world,
is contained in Newton's laws of moticn, which were first pub-

lished by him in 1686 in the Philosophiae Naturalis Principia

Mathematica. Newton's formulation of these laws was so clear,

and the application to celestial bodies so powerful and compre-
hensive, that his work appeared to illuminate a scene where

all had been darkness before. Some years after Newton's death,
Alexander Pope wrote,

"Nature and nature's laws lay hid in night;
God said, 'Let Newton be,' and all was light."

Pope's couplet underscored what was to become the traditional
view, that Newton's work on the laws of motion and gravity

stood by itself as the beginning of the scientific revolufion.
But Newton built on a foundation established by 2000 years of

intelligent inquiry.

Aristotle dominated Western scientific thought for 2000
years prior to Newton. 1In the fourth century B.C. Aristotle

abstracted certain observed properties of moving objects into a
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general law which survived for many centuries. Noting that an
object propelled alcng the ground always comes to rest, he
concluded that all moticn is opposed by a natural resistance,
which must be overcome by a propelling force. He proposed,
therefore, as a general law of motion, that an object travels~at
a speed proportional to the force propelling it, and inversely
proportional to the force resisting its motion. If F is the
applied force, R the force of resistance, and v the
resultant speed, Aristotle's law of motion may be written
symbolically as

F = C - z
R

in which C 1is a constant which does not depena on F, v

or R .

The difficulty with this law is that it predicts v = 0
when F =0 , i.e., the object comes to rest when the propelling
force is removed. But in many cases that is not true. What
force keeps an arrow moving after it leaves the bow, or a

stone after it leaves the hand of the thrower?

Aristotle was in trouble because his law of motion required
the continuous application of a force to sustain the motion.
But he had an answer: air flows around the arrow or the stone

from the front to the rear and pushes it ahead.
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This answer is not very much to the taste ¢f a modern
mind, nor did it appeal toc every scholar in the Middle Ages.
In the sixth century A.D., Philoponus cf Alexandria objected
that the bow would not be needed if air alone could propel tﬂe
arrow; that viclent beating of the air behind the arrow would
suffice. This was not observed; hence, Philoponus suggested
that the action of the bow is essential; that the bow imparts
a motive power to the arrow which persists for some time

after the arrow is projected.

However, Philoponus thought that in empty space the
motive power of a projectile would gradually diéappear.

He had not yet come upon the concept of inertia.

By the late Middle Ages scholarly activity had moved
northward to include climates of severe winter cold, and
ice skating on frozen lakes and rivers must have been a
common experience. No doubt it was observed that the
skater glides very far on an exceptionally smooth sheet

of ice. Perhaps extrapolating from such simple observations,
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a physicist named Jean Buriden, who taught at the University
of Paris in the 14th century, drew the conclusion that an
object which is set in motion acquires a property he called
impetus, by_which its motion is maintained indefinitely if
no opposing force acts on it. He defined the impetus of a
moving body as proportional to the product of

its mass by its speed of motion. In these state-
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ments Buriden fcrmulated elements of Newton's laws of motion

three centuries befocre Newton's birth.

The essence cf Avistctle's law of mction is that an object
moves at a speed which Is proportional to the force applied
to it. Buriden brcke this proportionality when he proposed
that an object may continue in motion even though no force is
applied. Yet the moticn of an object is clearly influenced by
applied forces in scme way. The critical point which Aristotle
missed is that an applied force changes the speed of an object.
“Change" is the key word. When a propelling force is applied,
the speed increases; when the force is removed, the speed
remains constant thereafter. If an opposing force is applied,

the speed decreases.

In physics, the rate of change of speed of a moving object
is called its acceleration. The accelerated motion which
results from the steady application of a constant force is

called uniform acceleration.

Uniformly accelerated motion was investigated in detail
by Galileo (1564-1642), who took as his example the falling
motion of a body under the constant downward force of gravity.
His objective was to determine the manner in which the speed
changes as an object falls. 1Initially he held the erroneous

view, expressed in a letter written in 1604, that a falling
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body picks up speed in proportion to the distance fallen.

After some years he ccrrected his error and defined uniform
acceleration as a steady increase of speed in proportion to the
time elapsed in falling. This definition carries an implication
which Galileo put to the test of experiment. If,lstarting from
rest, a falling object gains speed in proportion to time, the

velocity v at the end of a time t may be written
v = at

where a 1is the constant of proportionality. The constant a
is the magnitude of the acceleration, since it controls the
rate at which the speed increases. Let us now calculate the
distance fallen in the time t . The average speed during the

time t 1is kv , and the distance fallen is

d kv xt = k(at) x t

]

Lat2

Thus in uniform acceleration the distance fallen increases as
the square of the time. To test this relation, Galileo con-
structed the following experiment. He cut a groove in a board
18 feet long, lined the groove with smooth parchment, and raised
one end about two feet above the other. He permitted a small
bronze ball, about an inch in diameter, to roll down the groove,

and noted the time required for its descent. He then noted the
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time required for the ball to roll one quarter the distance
previously gone, and found this time to be one half the previously
measured time. Next he tried other distances of descent. 1In

this way he determined that the distances traversed were in

proportion to the squares of the times elapsed.

Accuracy was essential in these measurements, in order to
distinguish the proposed laws of acceleration from other pos-
sible definitions, but accurate clocks were not available at
that time for measurement of such short intervals of time as a
few seconds. Galileo therefore devised a new instrument, a
modification of the water clock, for his purposes. His clock
consisted of a vessel of large horizontal dimensions, with a
hole at the bottom which was covered by the finger until the
ball was released at the top of the plane. When the ball reached
one of the critical marks on the plane, the finger was replaced.
In the interim water spurted from the hole into a pan which
could be placed on a balance and weighed. The weight of water

collected gave a measure of the time interval.

With the hindsight of 400 years Galileo's investigations
seem very simple, but in his time they represented a highly
original and difficult step. Galileo made a vital contribution

to the laws of motion by shifting the emphasis from speed to
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acceleration, in the study of moving bodies, and by establishing
the quantitative law of motion for the special case of accelera-
tion under a constant force. But Galileo stopped short of
attempting a general description of the motion produced by
any kind of force. The general law was formulated by Isaac
Newton, who was born on the manor of Woolsthorpe in England

on Christmas Day of 1642, in the year of Galileo's death.

By Newton's time all the elements required for a complete
understanding of the laws of motion were at hand. Several of
his contemporaries arrived at some of his important results
independently, in some instances preceding him, but Newton
alone displayed the powers of analysis and intuition required
to fit the pieces together. He started with a clear statement

of the law of inertia:

Every body continues in its state of rest
or of uniform motion in a straight line,
unless it is compelled to change that state
by forces impressed.

This was Newton's first law of motion. The second law drew
on Galileo's work and on some parallel ideas of Descartes

(1596-1650) on the relation between force and acceleration:

An object is accelerated in proportion
to the forces applied.




The force required to accelerate an object depends on
the quantity of matter which the object contains; the larger
the object, the greater the force which must be applied.
Newton propcsed that the force needed to produce a given degree

of acceleration is exactly proportional to the quantity of matter

in the object. For the quantity of matter he introduced the
term "mass." If m 1s the mass of an object, a its acceler-
ation, and F the force applied, the complete statement of the

second law is

The second law provided the foundation for all developments
in physics from the 17th through the 19th centuries; it lasted
without modification for 219 years, from the publication of
Newton's Principia in 1686 to the publication of Einstein's
law of special relativity in 1905. Even today, it serves as
an accurate description of all events which take place at

speeds considerably less than the speed of light.

Note that the first law is included in the second, and need
not be written séparately; for, if the force applied to an
Object is zero, then the acceleration vanishes and the speed
is therefore constant. Why did Newton write the same state-
ment twice? Perhaps the burden of 2000 years of misconceptions

regarding moving bodies weighed so heavily on his mind that he
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felt compelled to exribit separately the aspect of his general

law of motion which most clearly conflicted with older ideas.

The second law of motion sets acceleration proportional
to applied force, whereas Aristotle's law had set speed propor-
tional to force. It is impossible to overemphasize the impor-
tance of this simple change. In the study of mo§ing objects
it took us 2000 years to rid ourselves of the erroneous emphasis

on speed rather than on acceleration.

The formulation of the laws of motion is completed by
the third law:

To every action there is opposed an equal
reaction.

i.e., the acticn of one object on a second equals the reaction

of the second back on the first.

When the objects are in contact, the third law is an
obvious statement of everyday experience. A swimmer dives off
a small boat into the water; he pushes back against the boat
to get the impetus for his dive, and the boat pushes forward
on him. As a consequence of the force which each exerts on the
other, both move away from the point of contact in oopsite

directions. The third law asserts that the force of the man
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on the boat is precisely equal to the reaction of the boat

on the man.

Consider another example which brings out the importance
of the relative masses of the two interacting objects. A man
lies on the ground with his feet against a rock, and prepares
to push the rock away by straightening his legs. If the rock
is much larger than he is, by pushing against it he will only
propel himself backward when he straightens his legs. The rock
will move very slowly, if at all, in the other direction.

On the other hand, if the rock is much smaller and lighter
than the man, he will, as he straightens his legs in pushing
against the rock, propel it away from him while he moves

backwards slightly, if at all.

This thought-experiment suggests that when two objects
separate by pushing on one another, they move apart at speeds
which depend on their relative sizes or masses. More precisely,
they separate at speeds which are inversely proportional to
the ratio of their masses, aé can be shown from the second

law of motion. Labeling the objects by the numbers 1 and 2,

Vl = m2
V2 ml
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or, clearing fractions,

mlvl = m2V2

The product of the mass and the velocity of a moving
object is called its momentum. (It is the same guantity which
Buriden suggested as a measure of impetus in the 1l4th century.)
Thus, the third law states that when two objects, initially
at rest, separate as a consequence of forces exerted on one
another, they carry off equal amounts of momentum in opposite

directions. This remark underlies the physics of rockets.
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Chapter 2. THE MOTION OF THE MOON

It is a remarkable achievement on the part of Newton that
he was able to distill all past experience regarding forces and
motions into a simple and yet complete statement which provide@
the foundation of modern science, and stood unchanged for 200
years. Yet great as this achievement is, it does not compare
with the quantitative formulation of the law of universal
gravitation and the development of its consequences iﬁto a

comprehensive system of the universe.

Several of Newton's predecessors and contemporaries had
suggested that fhe gravity which pulls objects to the earth's
surface is a universal force of attraction, which varies
inversely as the square of the distance between the attracting
bodies. Alphonse Borelli (1608-1678) anticipated Newton's
Principia by suggesting, in'1666, that the attractive force
of gravity is exerted by the sun on the planets, and bends
their paths intoc ellipses. Robert Hooke (1635-~1703) proposed
as early as 1665, in the Micrographia, that gravity acts on
the moon, the planets and all celestial bodies; his reason
being that a force of attraction to the center must be intro-

duced to explain the spherical shape of these objects.
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named Johannes Kepler (1571-1630). Kepler had analyzed the
observations on the mctions of the planets, and from them

he had derived three general laws of planetary motions

l. The orbit of each planet is an ellipse with
the sun at one focus.

2. The radius vector sweeps over equal areas
in equal intervals of time.

3. The ratio of the cubes of the semimajor
axes of the orbits of any two planets is

equal to the ratio of the squares of their
periods.

The first two of these were published in 1609, the same
year in which Galileo completed his analysis of uniform
acceleration. The third law appeared in 1618. Kepler
arrived at these laws because he had available to him the
superb measurements of Tycho Brahe on the positions of the
planets. Kepler joined Brahe as his assistant in the observ-
atory near Prague in 1600, and was assigned the orbit of Mars
as his first task. Kepler tried to explain the observed
positions of Mars in the sky by assuming that the planet
traversed a circular orbif around the sun, following the tra-
ditional point of view that the circle was the natural path
for celestial bodies. He was forced to place the sun in an

off-center position in order to improve the agreement between




his thecry and the observations. With the aid of this assump~
tion, and after four years of calculaticons, he reduced the
discrepancy between theory and cbservation to eight minutes of
arc. Eight minutes cf arc is the angle between the eyes of

a person at a distance of one city block. Yet this minute angle
signaled the fall of the Ptolemaic epicycle and the rise of

the new science.

In Ptolemy's description of the universe the sun, moon
and planets moved in circular orbits about the earth, which stood
at the center of the solar system. In order to account for
the complicated motions of the other planets as seen from
the earth, Ptolemy (2nd century A.D.) constructed a system of
epicycles for their orbits. These were small circular motions
superimposed on the main orbit of the planet around the earth.
Copernicus (1473-1543) simplified the Ptolemaic system by
placing the sun at the center of the solar system, but his
description of planetary motions still relied on the epicyclé.
Kepler was the first astronomer to overthrow the circle and
the epicycle, and establish the ellipse as the correct descrip=
tion of the motion of the planets. In so doing, he opened the
way to Newton's subsequent linking of the elliptical orbit

and the inverse square law of gravity.
The accuracy of Tycho Brahe's observations played a critical
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role in this development. Ptclemy and Copernicus based their
epicycle theories on cbservations of the positions of the planets
which were accurate to ten minutes of arc, and were able to fit
the epicycle to the cbserved motions of the planets if they allowed
this amount of error. The discrepancy of eight minutes of arc
which Kepler found in his theory of Mars would have satisfied
Ptolemy and Copernicus. But Brahe claimed his observations to

be accurate to two minutes of arc, and Kepler believed him. He
continued his labors through two more years and 900 folio pages of
l6th centwury algebra and geometry, until he discovered that if
Mars moved, not in a circle, but in an ellipse with the sun at one
focus, then the positions of the planet could be predicted with

an error of less than two minutes of arc at each point.

It was a fortunate circumstance that Brahe assigned Mars
to Kepler on his arrival in Prague, because the orbit of Mars
is more elliptical, that is, more egg-shaped, than the orbit
of any other nearby planet. The earth's orbit is close to a
perfect circle; it departs from circularity by two per cent.
The orbit of the planet Venus departs from a circle by only
0.7 per cent. The orbit of Mars, however, is rather different;
it departs from circularity by 9 per cent. Because the
departure was as great as 9 per cent Kepler was unable to fit

his calculations of the Mars orbit into the conventional ideas
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of circular orbits.

Kepler's second law does not concern us here, except to
say that it tells us a planet moves fastest when it is closest
to the sun and slowest when it is at its furthest distance

in its elliptical orbit.

Kepler spent 22 years in extracting the third law of
planetary motion from the data. The third law deals with the
relation between ﬁhe distance from a planet to the sun and the
time it takes that planet to go around the sun, that is, with
the length of its year. It may be stated as follows: The
square of the time (T) in which a planet completes one cir-
cuit around the sun is proportional (proportionality symbol: of )

to the cube of its distance to the sun (R)

3
As illustrations of the third law consider the orbits of
the earth and Mars. The earth is 93 million miles from the
sun, and revolves about the sun in 365 days or approximately
30 million seconds. Mars is 142 million miles from the sun,
. . 2 3
or roughly 1.5 times farther than the earth. Since T T{

we have

I‘Z_*I‘_;‘i‘fl= R3 C)’hw‘»v) _ (,53 = 3,38
T2(gwt)  R* (Baith)




and

_T_(Mars) _ 3.38 = 1.9
T (FEarth)

hence the Martian year is 1.9 times the length of a year on the

earth, or approximately 690 days.

From the age of 25 to 47 Kepler labored over Brahe's
data, testing them for significant relationships. He succeeded
totally; within the observational accuracy of 2 minutes of
arc there are no other laws to be found in the movement of the
planets. Kepler found the strength needed to carry him through
this ordeal in his belief that a divine order and purpose
must exist in nature. He saw their expression in the beauti-
ful simplicity of the proportion between the square of the time
of revolution of a planet and the cube of its distance from

the sun.

Newton also believed that the mechanics of the solar
system expressed a divine purpose. Yet he could not be satis-
fied with Kepler's laws as they stood. Newton had developed
a clear understanding of the laws of motion; he knew that a
planet or any object moves in a straight line unless a force
deflects it; he knew, therefore, that a force must act on the
planets to keep them circling around the sun; he knew that a

force must act on the moon to keep it circling around the
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earth:; and he lonked tc Kepler's laws to provide the key to

the nature of that force.

The Law of Gravity. Newton claimed that he was a very young
man when he first had the remarkable thought on the univer-
sality of gravity. He had returned home from Cambridge Univer-
sity in 1665, at the age of 23, to avoid the Great Plague
which struck the city in 1665 and 1666. He remained at home
for two years, and, according to his recollections in later
years, it was during this period of isolation that he first
reflected on the motion of the moon, which revdlves around the
earth in an approximately circular orbit as the planets

revolve around the sun. The moon would fly off at a tangent,
were there not a force attracting it to the earth and con-
straining it to move in a circular path. What is this force?
Could it be the same as the force of gravity which the earth
exerts on objects at its surface? Newton conjectured that the
two forces were identical. If this proposal were correct it
would unite the earth and the heavens in one mechanical system.

The boldness of the step cannot be exaggerated.

Newton turned to the motions of the moon and planets for
a test of his hypothesis. Kepler had already written in 1609,

... the attractive force of the earth ... extends to the moon
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and even farther." Hooke had made the same conjecture. But
Newton went much further. Frum Kepler's laws of planetary motion
he derived a basic property of the force which holds the planets
in their orbits. He then carried out calculations to deter-
mine whether this same property was possessed by the force that
holds the moon in its orbit and the force that draws bodies to
the ground. He writes, "And the same year (1665 or 1666) I
began to think of gravity extending to the orb of the Moon, and
having found out how to estimate the force with which a globe
revolving within a sphere presses the surface of the sphere,
from Kepler's Rule of the periodical times of the Planets being
in a sesquialternate proportion of their distances from the
centers of their Orbs I deduced that the forces which keep the
Planets in their Orbs must (be) reciprocally as the squares of
their distances from the centers about which they revolve:

and thereby compared the force requisite to keep the Moon in her
Orb with the force of gravity at the surface of the earth, and
found them answer pretty nearly. All this was in the two plague
years of 1665 and 1666, for in those days I was in the prime of
my age for investigation, and minded Mathematicks and Philosophy
more than at any time since. What Mr. Hugens has published
since about centrifugal forces I suppose he had before me."

That is, he combined the law of centrifugal reaction with

Kepler's third law of planetary motion to derive the inverse
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square law for the variation of the gravitational force with

distance from the attracting body (Chapter 3).

Armed with the l/R2 law, Newton could now test the uni-
versality of gravity. He reasoned: if the force of gravity
acts between all objects in the universe, then this force,
which emanates from planets to the sun and binds these planets
in their orbits, will also emanate from the earth, and from
every other planet, and attract objects to them as well.

This same attraction must be the familiar force of gravity
which pulls objects to the surface of the earth; but the
earth's gravity must, in that case, also reach out to the moon,
and hold the moon in its orbit. Since the force of the sun's
gravity falls off as l/R2 , the earth's gravity must also
decrease in the same proportions. The moon is 240,000 miles
from the earth, or 60 times farther removed from the center of
the earth than a body on the surface of our planet. Therefore,
the force of the earth's gravity, acting on the moon, should be
weaker than the force of gravity acting at the surface of the

earth in the ratio of 1 to (60)2 or 1/3600 .

Newton calculated the force required to keep the moon
in its circular orbit around the earth, compared it to the
force of gravity acting on objects at the surface, and found
their ratio to be close to 1/3600. In his words, he found

them to agree "pretty nearly."”
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Although these calculations are supposed to have been
carried cut by Newtcn in 1666, he did not publish or refer to
them at that time, possibly because he had to make an assumption
that he was unable to prove, namely, that the earth attracted
an object at its surface with the same force that it would exert
if all the mass of the planet were concentrated in a point at
its centef. That mathematical demonstration, if it could be
discovered, would tie together theories and observations of all
celestial motions in a single system. In 1679 he was able to

prove this statement with the aid of the calculus.

In the interim other scientists had also derived the
inverse square law of gravity by combining the law of centrip-
etal acceleration with the third law of Kepler.' Three men in
England carried out the derivation in 1679. These were the
Physicist, Robert Hooke (1635-170§L the astronomer, Edmund
Halley (1656-1742), and the architect, Christopher Wren
(1632-1723). They were all members of the Royal Society, and
all exceedingly interested in natural philosophy. When they
had derived the inverse square law of gravity from Kepler's
third law, the burning question for these men was whether
Kepler's first law of eliiptical .@xDPats could be derived from

the inverse square lawwfor the gravitational force. If this
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were so, all known laws of planetary and terrestrial motion

would be united in one system.

In the period of 1683-1684 the three men met several
times to discuss the proposition. They guessed_that it was
true, but could not carry out the mathematics needed to
complete the proof. Halley visited Newton later in 1684 to ask
if he could help his friends in their problem. Newton replied
that he had proved the result several years eariier,.but was
unable to find his old calculations. Under the stimulus of
Halley's interest he returned to the problem he had laid
aside years ago, and expanded his investigations iﬁto a major
treatise, which appeared in 1687 under the imprimatur of the

Royal Society with the title, Philosophiae Naturalis Principia

Mathematica.
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Chapter 3. EXERCISES IN CRAVITY

The derivaticn of the inverse square law of gravity from
the third law of Kepler is among the most important calculations
ever perfcrmed in the history of science. I include it, then,
for the mathematically inclined reader who would like to retrace

the steps of Newton's reasoning.

In the second law of motion
F=ma
F 1is the force acting on the planet, m is its mass, and
a 1is its acceleration in the motion around the sun. The
problem Newton set himself was to determine the force by deducing

the acceleration from observations on the motion of the planet.

In Newton's first attack he probably replaced the ellip-
tical orbits of the planets by circles in order to simplify
his mathematical labors. Although the difference between the
circle and the ellipse played a critical role in the subsequent
history of the theory of gravity, it does not have a signifi-
cant effect on the derivation of the inverse square law.
Assuming, then, that the orbits of the planets are circles,

the first task is to calculate the acceleration of a planet




moving in a circle. In circular motion a planet keeps a constant
distance from the sun, and we know, from Kepler's second law
(Chapter 2, pp. 2=4), that in this case the speed of the

planet in its orbit is also constant. If the speed is constant
it seems that the acceleration must be zero, but it must be
remembered that the motion of the planet is described not only
by its speed but also by the direction of travel. Although the
speed is constant the direction of motion changes continuously

as the planet circles about the sun. This change of direction

is also an acceleration. The particular kind of aecceleration
associated with circular motion is called centripetal accelera-
tion. 1Its magnitude depends on the radius of the ¢ircle and

the speed with which the planet moves. In otder to calculate

it, consider the diagram: a planet is shown moving in a cjxcular
orbit of radius T , the motion of the

pPlanet being indicated by an
arrow labelled v (for
velocity). 1In a short
interval of time t the
Planet progresses a distance
S in its orbit, the distance

being given by S = vt. 1In this

same interval of time the line
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from the planet to the sun turns through an angle 8 = S/R = vt/R .
The acceleration is the rate at which the velocity changes, i.e.,
the change in the velocity divided by the time interval t

in which the change ogcurs. The next diagram shows the arrows
representing the velocity at the beginning and end of the

time interval, when the planet

is at positions 1 and 2, respec-

v
1
tively. The angle between the
Lv °
velocities v, and v, equals
the angle 8 bvetween the lines vy

joining the planet to the sun.
The change of velocity in the
time interval t 1is given by
the length Av of the line joining vy and v, . This is

2v sin% . If t is a short time, and, therefore, B is a

small angle, sin g is approximately equal to % and
2
2
v = 2vsin§ = v = Xt
2 R
The centripetal acceleration is
a = velocity difference = time interval
2 2
= Y-t ~ ot = A
R R

This important formula apparently was derived by Newton

in his youth in the period 1665=1667, according to his
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recollection 30 years later. but he did not communicate the
result to anyone at the time. It was also derived by Christian
Huyghens (1629-1695' a Dutch physicist, and published by

him in 1673.

Knowing the fcrmula for centripetal acceleration, we

return to Newtvn's law of motion, and write

F:-:-)fyl(b:)’?‘\,

R

This formula gives the magnitude of the force F which must be
applied to the planet to bend its path into a circular orbit

of speed U~ and radius’E . If Y~ could be expressed in

terms of the corbital distance 7& , we would have a formula for
the gravitaticnal force in terms of the distance between the
planet and the sun, and our task would be completed. It is
precisely this relation between 7Y~ and ?3 which is supplied
by Kepler'®s third law of planetary motion. The third law states

that

where .7- is the orbital period, or time for completion of an
orbit, and E? is defined above. C is a constant which has

the same value for all planets. The speed of the planet is

Mzww,awwf: 27R

v =

Thus,
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2 2
2 Yar R
- wmvVE = m L2
F= Mg RT2
2 with the aid of Kepler's third law,
Ur*
F = M\ c ?2.

Thus the force holding a planet in its orbit falls off as the

and, eliminating T

square of the distance (R) tc the sun.

Once this result was in hand, Newton proceeded to test the
universality of gravitation by determining whether the same
inverse square law holds for the separate forces which bind
the planets to the sun, hold the moon in its orbit, and pull
objects to the surface of the earth. Again using the
centripetal acceleration formula, he calculated the force hold-
ing the moon in its orbit around the earth. He then calculated
the force with which the earth attracts an object lying on its
surface. For this purpose he had to assume that the earth
attracts bodies on its surface as if its matter were con-
centrated af the center. The distance with which the attraétion
acts is, therefore, the radius of the earth, or 4000 miles.

The moon is 240,000 miles from the center of the earth. If
the inverse square law is universally applicable, the force
of gravity on the moon will be weaker than on objects &t the
earth's surface, in the ratio of (4000/240,000)2 or one part

in 3600.



In Newton's calculatirns he did not consider the actual
forces exerted by the earth on the mcon and on a falling object
near its surface, respectively. Instead, he considered the
accelerations produced by these forces, which are proportional
to them according to his second law of motion. The ratio of
the forces is, therefore, equal to the ratio of the accelera-
tions. We will now calculate these accelerations as Newton did,

and compare their ratio with 1:3600.

First we consider the gravitational acceleration ¢f an
object at the surface of the earth. This is readily obtained
by experiments. A freely falling object experiences the full
force of gravity, which causes it to accelerate in such a way
that, as Galileo determined, the speed of falling increases in
proportion to the time, and the distance fallen increases as
the square of the time. 1If the falling object is initially
at rest, and acquires a speed v at the end of a time t ,

then the acceleration is

change in speed = time elapsed

V]
|

= v/t

The distance fallen is equal to the average speed@ during the

fall, or v , times t or %vt . In terms of acceleration,

d = 5at2
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Therefore, a measurement of the distance d through which a
body falls in a time t will yield the gravitational acceler-

ation, a .

In Newton's time these measurements had been carried out
on falling bodies, and it had been determined that in the

first second of time an object falls 16 feet. Thus

16 feet = %ka(l sec)2
and

a = 32 feet/sec2
With the acceleration of a body at the surface of the earth
determined, Newton then proceeded to calculate the acceleration
of the moon toward the earth, using, once again, the Newton'

Huyghens formula for centripetal acceleration:

a = v2/R .

The moon traverses a circle of 240,000 mile radius and length
2 X 240,000 miles in a time of 28 days or (28 x 86,400)
seconds, its orbital speed v being

2 X 240,000 miles _
28 x 86,400 seconds

0.62 miles/second

3260 feet/sec

Thus the centripetal acceleration of the moon in its orbit is

(3260) 2
(240,000 x 5280)

a = feet/sec2




a = .0085 feet/sec2
The ratio of the mccn's acceleraticn to the acceleration of

gravity 1s )
.00845 — 32,2 = 1:3800

This result is clese to the predicted ratio of 3600, the
discrepancy being the result of approximations in our arith-
metic. In Newton's calculations, when he repeated them in
1684 with the best values of a and R then available, the
ratio of the accelerations agreed with the theory to 1/60 of
one per cent, which was good enough to give strong support to

the hypothesis of universal gravitation.

Newton assumed in his initial deliberations in 1665-67
that the force of the earth on a nearby object could be replaced
by the attraction of a point mass situated at the center of
the earth. This is an accurate assumption for the moon, which
is so far away that it may be considered to be at very closely
the same distance from every element of mass within the earth.
But the force of gravity on an object at the surface of the earth
is compounded of the forces exerted by all the elements of
matter in the earth, some of which may be as close as a few
feet, while others are as far away as the full diameter of the
planet. All exert an attraction proportional to the inverse

square of their individual distances from the object in
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questicn, and it s difficult to determine how these separate
forces, whose magnitudes vary so greatly shall be added together.
Newton cnly succeeded in solving this problem in 1679 or 1680.

It is possible that he withheld the publication of his work

on universal gravitati.n and the motion of the moon because

he was unable tu pruve the validity of his assumption.

Complete Statement of the Law of Gravity. Newton stated that

the gravitational attraction of the earth on the moon is
inversely prcpcertional to the square of the distance between
them, and proporticnal to the product of the masses of both
bodies; and, in general, that the gravitational force of
attraction between two objects, of masses m and M , sepa-

rated by a distance R , is

in which G 1is the constant of proportionality, called the
constant of universal gravitation. 1In the metric system,
with length, mass, and time measured in centimeters, grams
and seconds, respectively, G has the value 6.7 x 1078,
This is the force holding a planet in its orbit. If we com-
bine the law of gravity with the second law of motion we

derive the value of the orbital velocity of a planet at a




cilstancae

R

crom the sun:
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